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Abstract--The aim of this paper is to present a detailed analysis of the problem of steady conjugate mixed- 
convection flow along a vertical finite fiat plate which is embedded in a porous medium under the boundary- 
layer approximation, The problem then reduces to a parabolic partial differential equation which involves 
only the buoyancy parameter, 2. The cases of both aiding (2 > 0) and opposing (2 < 0) flows are considered. 
Full numerical and asymptotic solutions are obtained over a wide range of values of 2 and the results for 
the temperature profiles on the plate and in the convective fluid are presented. It is found that, unlike all 
other problems previously investigated, in both a porous and a non-porous medium and for all inclinations 
of the plate, unseparated flows can be obtained in this conjugate situation even when there is an opposing 
flow when 2 1> - 1. Further, when 2 is very large and negative, predictions of the separation point of the 

boundary layer from the plate are also reported. 

1. INTRODUCTION 

The problems which occur in conjugate free and 
forced convection from vertical and horizontal sur- 
faces in a viscous fluid have been the concern of  
researchers for more than 30 years (see, for example, 
the recent review article by Martynenko and Soko- 
vishin [1]). However,  very little research work has 
been performed on the corresponding porous medium 
configuration [2, 3]. In the mixed-convection region it 
is important  to study such problems because fre- 
quently the boundary layer separates, which has a 
considerable effect on the heat transfer characteristics. 

In this paper we present an analysis of  the problem 
of  conjugate mixed convection from a vertical finite 
flat plate which is embedded in a porous medium. We 
propose new non-dimensional co-ordinates which are 
such that the conjugation parameter is scaled from the 
governing equations. Thereby, the problem depends 
only on one parameter,  namely the buoyancy 
parameter,  )~, which is the ratio of  the Rayleigh to the 
Peclet number,  Ra/Pe. Both the situation when the 
flow and buoyancy force are in the same direction, 
which is referred to as assisting flow, and that when 
they are in opposite directions, which is referred to as 
opposing flow, are discussed. It is worth mentioning 
that, in all cases previously investigated, in both a 
porous medium and a non-porous medium, it has 
always been found that, when there is an opposing 
flow, no matter  what the inclination of  the plate, the 
boundary layer separates at some distance along the 

plate. However,  in the present conjugate problem the 
flow does not  separate for 2 >/ - 1 ,  i.e. there is a 
regime in which the flow does not separate even 
though the flow is opposing in nature. When 2 < - 1 
the flow does separate and the separation point has 
been determined from the full numerical solution. It 
is found that, as one would have physically predicted, 
the smaller the value of  2 the sooner flow separates. 
When 2 is very large and negative an estimate of  the 
distance along the plate where the flow separates is 
presented. Further,  in this paper we predict the tem- 
perature fields both in the boundary layer adjacent to 
the plate and at the solid-fluid interface, which are 
determined by the common solution of  the energy 
equations for the fluid and the solid, respectively. 

2. GOVERNING EQUATIONS 

The co-ordinate system and flow variables are 
shown in a schematic diagram (Fig. 1). The model is 
based on a vertical rectangular plate, of  length l and 
thickness b, which is embedded in a porous medium 
and over which the fluid flows with an undistorted 
uniform speed U~. The outside surface of  the plate is 
maintained at a constant temperature To, while the 
ambient fluid is at a uniform temperature T~, where 
To > T~ (aiding flow) or To < T~ (opposing flow). 
We assume that the boundary-layer approximation 
holds in the convective fluid and that the plate is thin 
relative to its length, i.e. b/l<< 1, so that the axial 
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NOMENCLATURE 
thickness of the plate 
acceleration due to gravity 
effective thermal conductivity of the 
convective fluid 
thermal conductivity of the plate 
permeability of the porous medium 
length of the plate 
characteristic length scale, 
[gflKI To - T~I/(va)] ( b k j k f  
Peclet number, U~L/c( 
Rayleigh number, 
gflK(To- T~)L/(vo¢) 
temperature in the convective fluid 
temperature (constant) at the outer 
edge of the plate 
ambient temperature (constant) 
temperature at the interface of the 
plate and convective fluid 

a, g velocity components along 2-, P-axes 
Uw velocity on the plate 
U~ free stream velocity (constant) 
x, 2 Cartesian co-ordinates along and 

normal to the plate. 

Greek symbols 
c~ effective thermal diffusivity of 

q 
0 

0 w 

2 
Y 

saturated porous medium 
coefficient of thermal expansion 
pseudo-similarity variable 
non-dimensional temperature, 
(T-- T.)/J To - T~] 
non-dimensional plate temperature 
buoyancy parameter, Ra/Pe 
kinematic viscosity of fluid 
variable, x t/2 
non-dimensional stream function. 

heat conduction in the solid plate can be neglected. 
Consequently the temperature profile in the plate can 
be assumed to be linear and thus we have (see, for 
example refs. [3, 4]) 

/~HA 

- \@L=o 

where Tw(x) is the temperature at the plate, which is 

Tw(7) 

o 

Buoyant Force VectoFs 

Aiding Flow Opposing Flow 

To>Too To<T = 

U=, T= 

Fig. 1. Physical model and coordinate system. 
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not known a priori  and is determined as part of the 
solution. 

Using the Darcy and Boussinesq approximations 
the boundary-layer equations for the physical prob- 
lem under consideration can be written in non-dimen- 
sional form as 

?,u c3v 
g-xv 4- ?~y), = 0 ( 2 )  

u = I 4-20 (3) 

~90 ~0 ~20 
u ~  v 4 .v - -  = - -  (4) x gy ?,.y,2 

where the non-dimensional variables are defined as 

x = ~rc/L y = P e t g y / L  u = a /U~  (5a) 

v = e e " 2 g / U ~  0 = ( T - T ~ ) / I T o - T ~ I .  (5b) 

Here the parameter 2 = R a / P e  represents the relative 
importance of the free to the forced convection, with 
2 > 0 for the aiding case and 2 < 0 for the opposing 
case, L = [ g f l K l T o - T ~ l / ( v c O ] ( b k d k O  2 is the charac- 
teristic length of the plate, Ra = g f l K ( T o -  To~)L/(m)  
is the Rayleigh number, and Pe = U~L/ct  is the Peclet 
number. 

The boundary conditions appropriate to this prob- 
lem are 

30 
t , = 0  ~ v = 0 - 1  on y = 0  (6a) 

0 = 0  as y ~ o o .  (6b) 

The system of equations (2)-(4) and the boundary 
conditions (6) only involve the single parameter 2. 
Further, the length of the plate l does not appear in 
the non-dimensional variables (5) and only enters the 
solution through the range of the validity of the solu- 
tion, i.e. 

0 ~ X ~ V:,: ~ b k f /  " (7)  

3. SOLUTION 

We first obtain a series solution which is valid near 
the leading edge of the surface of the plate in powers 
o f x  ~j2. We then obtain an asymptotic expansion which 
is valid for large x and 2 > 0. These two solutions 
are then joined by a numerical solution of the full 
boundary-layer equations. 

3.1. Solut ion  Jbr  smal l  x 
The transformed variables appropriate to this situ- 

ation are 

where 

= x " 2 f (  x ,  ~l) 0 = x ' /Zh(x ,  7) (8a) 

r I = y /X  1/2. 

Equations (3) and (4) then become 

(8b) 

f '  = 1 +2x l"2h  

/ _h  
2h" + . ~ ' - f ' h  = 2 x ~ f  ~ &c /  

and boundary conditions (6) reduce to 

f =  0 

(9) 

( lO) 

h' = x l : 2 h -  1 on r/ = 0 (1 la) 

h = 0  as q--+ct (l ib) 

denote partial differentiation with where primes 
respect to q. 

We look for the solution of equations (9) and (10), 
subject to the boundary conditions (11), in the form 

f = li~O1)+ x':2fL(~l)+.x:lz(tl)+ . . .  (12a) 

h = h o ( q ) + x l / 2 h ~ ( t l ) + x h : ( r l ) +  . . .  (12b) 

where the coefficient functions are given by 

f ;  = 1 

2h~ +foh~, - f ' o h o  = 0 

£ ( o ) = o  h o ( O ) = - I  & ( < ) = O :  

.f~ = ,~hj , (13) 

2hT+foh ~- (j+ 1)f;hj 
I I 

= ~ [ ( i + l ) h i f ' ,  ~ - ( i + 2 ) [ ; . , h ~  , ,] 
i=0 

L ( 0 ) = 0  h~(0)=h, ,(0) h , (~: )=0 (14) 

with j >/ 1. It should be noted that equations (13) 
describe the ordinary forced convection flow along a 
flat plate in a porous medium subject to a constant 
heat flux. 

The exact solutions for ./0, ho, .)'] and h) may be 
obtained in terms of the complementary error func- 
tion, namely 

.[i~ = q 15a) 

9 
ho = - ~t erfc (q/2) + - -~  e '/4 

fl = 2 1 1 + ~ 1  r/e-V-"4--(l+½r/2)erfc(rff2) 1 

hi = ( -  1 +32)[(1 +~r/2) erfc (rb/2)- ~ r / e  - ' ' '4  ] 

+2  {(1 -- 'all2) erfc 2 _ . ( r / / 2 )  

3 2 .~ 

(~ 5b) 

The non-dimensional temperature at the plate is 
then given, for small values of x, by 
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( I )  x = (16) O. ( ) ~ h/(O)x (1+i)/2 
j-o 

3.2. Solution for  large x 
For  this case one introduces the following vari- 

ables : 

where 

~k=x' /2?(x ,q)  0 =/~(x, ~) (17a) 

q = y/x '/2. (17b) 

Thus, equations (2) and (3) yield 

~ '  = 1 + , ~  (18) 

2/~"+]7~' = 2 x ( f ' ~ x  - h ' ~ )  (19) 

which has to be solved subject to boundary  condit ions 
(6), which become 

f = 0  x - ' ; 2 / ~ ' = / ~ - I  on ~ / = 0  (20a) 

/ ~ = 0  as ~/--.oo (20b) 

where primes now denote part ial  differentiation with 
respect to ~/. The solution of  equations (18)-(20) for 
large values of  x is of  the form 

~' ~ ~ I /2 ~ ~ J = f0 ( , )  + x J] (q) + . . .  (21a) 

= ho(q)+x-~/2h, (q)+ . . .  (21b) 

where the coefficient functions are determined from 
the following two sets of  equations : 

?o = l + ~ 0  

2/~ +.)70/~ ~ = 0 

]o(0) = 0 /~o(0) = 1 /~o(OO) = O; (22) 

2/~i +fo/~, = 0 

/~, (0) = / ~ ( 0 ) .  (23) 

Again, it is worth mentioning that  equations (22) are 
equivalent to the equations of the non-conjugate 
mixed convection on an isothermal vertical flat plate 
which is embedded in a porous medium (see ref. [5]). 
The solution for the higher-order terms in the expan- 
sions (21) may similarly be obtained.  However,  we 
found (see ref. [6]) that  at  0 (x -  ~) the first eigensolution 

,~ =.fo - q.?"o h~ = -- qho (24) 

arises due to the leading edge shift effect. Hence the 
usefulness of  asymptotic  expansion (21) is confined to 
terms up to 0(x ~). 

The non-dimensional  temperature at the plate for 
large values of  x is then given by 

O~w2~(x) = 1 - & ( 0 ) x  , :2+  . . . .  (25) 

3.3. Numerical solution 
To obtain a solution which is valid for all values 

of x, equations (2)-(4) have been solved numerically 
using a finite-difference scheme [7] in combinat ion 
with the method of continuous t ransformation [8]. 
Thus, we take 

~9 = {F({,~) 0 = {(1 +~2) - "2H(~ ,~ )  (26a) 

where 

= Y/~ 4 = x ':2 (26b) 

and then equations (2)-(4) transform to 

F ' =  1 + 2 ~ ( 1 + ~  2) "2H (27) 

/ , ~H OF) 
I ~ F ' H = ¢ ~ F  ~ - H ' ~ . ~  / (28) 2 H " + F H ' -  l + ~  2 . . 

and the boundary conditions (6) to 

F = 0  H ' = ¢ H - ( I + ; ~ 2 )  ''2 on ~ = 0  (29a) 

H = 0  as ~ - - * ~ .  (29b) 

Primes now denote part ial  differential with respect to 
~. It should be noted that equations (27) (29) reduce 
to equations (9) (11) for small values of x and to 
equations (18)-(20) when x is large. 

The non-dimensional  temperature at the plate is 
now given by 

0w(~) = GI  + ~=)- "2H(~, 0). (30) 

4. RESULTS AND DISCUSSION 

In all the calculations presented in this paper  great 
care has been taken to ensure that  the results are 
accurate. The posit ion at which infinity may be 
approximated varies with the value of the buoyancy 
parameter ,  2, as does the mesh size that is required 
both normal  and parallel to the plate. However, all 
the results presented in this paper  are indis- 
tinguishable from those which may be obtained by 
taking smaller mesh sizes or taking infinity at a larger 
distance. 

Figure 2 shows the numerically obtained value for 

%C~) 

~,0- 
. 

O,B 

0.6 

0,4 

0.2 

0.0 I - - 7  
o :o ~ ~ ~'~ ~o 

F i g .  2.  N o n - d i m e n s i o n a l  p l a t e  t e m p e r a t u r e  Ow(~_) p l o t t e d  

against ~ for various values of 2 = - 1,0, 1, 5, 10, 20, 50 and 
100 ; as 2 increases the curves decrease. 
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the wall temperature, 0w(~), obtained using the 
method described in Section 3.3 and given by equation 
(30), as a function of the distance along the plate, 

= x '/2, for various values of 2 >/ - 1. It is seen that 
if the value of ~ is sufficiently large then the asymptotic 
value of 0w(~) = 1 is approached. As expected from 
the investigation of equations (27) and (28), the larger 
the value of 2 the longer it is before the asymptotic 
value of 0w(~) is attained. It should be noted that the 
calculations have been performed for sufficiently large 
values of ~ for the asymptotic value of 0w(~) to have 
been obtained. However, because of the difficulty in 
clearly displaying all the important features of the 
behaviour of 0w(~) over a wide range of values of the 
parameter )t, 0w(~) is only displayed up to ~ = 50. 

It is very important to observe from Fig. 2 that, 
when the direction of the fluid flow at large distances 
from the plate is in the opposite direction to the buoy- 
ancy force, i.e. 2 < 0, it is possible to obtain a full 
solution of the governing parabolic partial differential 
equations (27) and (28) without the flow separating 
from the plate. In all other non-conjugate problems, 
which have been studied by numerous authors, where 
there is an opposing flow condition it is observed that 
the flow always separates when 2 < 0. This situation 
is always found to hold for all inclinations of the plate 
in a porous medium (see refs. [9-11]) or a con- 
ventional fluid (see refs. [12, 13]). 

Having obtained the temperature on the plate, 
0~(~), the next most important physical quantity to 
determine is the velocity on the plate, Uw. However, 
once 0~(~) is known u~ is easily determined from equa- 
tion (3) and is therefore not presented in detail in this 
paper. However, it is important to observe that, in the 
limit ~ --, 0% as 2 increases Uw increases. 

Typical temperature profiles of the convective fluid, 
0(~, ~), at various locations along the plate, ~, are 
shown in Fig. 3 as a function of ~, the scaled distance 
from the plate, for 2 = 1. As the value of ~ increases 
the profile increases monotonically and tends to the 
fully developed one. Further, in Fig. 3 we again 
observe that 0~(~) is initially zero but tends mon- 
otonically to unity. The results for other values of 
)./> - 1 show a similar phenomena to those shown in 
Fig. 3 but the larger the value of )~ the slower is the 
approach to the asymptotic solution. Again, the vel- 
ocity profiles may easily be determined from the tem- 
perature profiles using equation (3). 

In Fig. 4 the variation of 0w(~) as a function of ~ is 
presented for 2 = 0.5 [Fig. 4(a)], and 2 = - 0 . 5  [Fig. 
4(b)] obtained from the full numerical solution as 
presented in Section 3.3 and given by expression (30). 
Also shown in Fig. 4 are the small x solution, 0k ~, 
given in equation (16), and the large x solution, 0~w 2~, 
given in equation (25). In the small x solution the first 
six terms in series (16) have been obtained and the 
results for one, three and six terms are presented. 
Clearly, as the number of terms increases the larger is 
the range of validity of the solution, It is observed 
from Fig. 4, and from calculations performed at other 

e( ( ,g )  

! .0-  

0.8- 

0.5- 

0 . 4 -  

0 .2 -  

I < 00 I ~ ~ 

Fig. 3. Non-dimensional temperature profiles 0(~,~) plotted 
against ~ at ~_ = 0.05, 0.1, l, 5, 10 and 100; as ~ increases the 

curves increase. 

values of 2 >/ - 1, that the larger the value of ), the 
smaller is the range of validity of the small x solution, 
i.e. equation (16). In the large x solution (25) the first 
eigensolution (because of the leading-edge shift of the 
boundary-layer) comes in at the third term in series 
(21) and hence only the first two terms for large values 
of x have been calculated. Again, it is observed that 
the larger the value of 2 the larger must the value of 
be taken in order for there to be a good agreement 
between the series solution (25) and the full numerical 
solution (30). Thus, as seen from Fig. 4, the smaller 
the value of ,i the larger is the range of values of ~ for 
which either the small or the large x solutions are 
valid. 

When 2 < - 1 the fluid flow always separates from 
the plate. The reason for this is that 0w(~) always 
increases monotically from zero at x = 0 to unity at 
large values of x, and, hence, if the velocity component 
along the plate, i.e. u,,, is to be always positive then 
we see from equation (3) that 2 ~> - 1. Ifu > 0 every- 
where then information is always transmitted down- 
stream of the leading edge of the plate and we there- 
fore expect that we should be able to march from 
small values of x to large values of x. However, if 
there are regimes where u < 0, this implies that infor- 
mation is being transmitted upstream and therefore 
we cannot expect, mathematically or physically, to be 
able to specify information at small values of x and 
move to large values of x without encountering fluid 
separation. 

In Fig. 5 the variation of 0w(~) with ~ as obtained 
from the full numerical solution described in Section 
3.3 is presented for various values of 2 < - 1 .  The 
termination of the curve corresponds to the value 
where the numerical solution terminated because of 
the upstream influence. Also shown in Fig. 5 are the 
solutions obtained from the small x solution given by 
equation (16) and clearly in this situation there are no 
large x solutions. In Fig. 5(a), we have ;t = - 1.1 and 
one, three and six terms have been used in expansions 
(12). As expected, as the number of terms increases 
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3 terms ~ s ~ l l  solution 

terms 
0.2- 

~ ; ~ ,~ ~ 0.0- , - - 

Fig. 4. Non-dimensional plate temperature 0w(~) plotted against ~ ~ r :  (a) 2 = 0.5, (b) 2 = -0.5.  

the larger is the range of  values of  ~ for which 
there is a good agreement  between the small x 
solut ion and  the numerical  solution.  For  2 e  
{ - 1 . 5 , - 1 . 4 , - 1 . 3 ,  - 1 . 2 }  Fig. 5(b) shows the 
compar i son  between the numerical  solut ion and  the 
six-term small  x solution.  It is observed tha t  the small  
x solut ion is a good approx imat ion  to the numerical  
solut ion for all values of  C but,  of  course, where the 

numerical  solut ion breaks down,  due to the separat ion 
of  the bounda ry  layer, c anno t  be easily predicted from 
the series solution. Figure 5(c) and  (d) shows the 
var ia t ion  of  0w(C) as a funct ion of  C for 
) . e { - I 0 , - 5 , - 3 , - 2 }  and 2 e { - 1 0 0 , - 5 0 , - 2 0 ] ,  
respectively. It is seen, as one would expect, tha t  as 
the value of  2 becomes larger the sooner  the flow 
separates.  Figure 5(c) and (d) suggests that ,  as 2 

%C~} 

~ . 0 -  Ca) 

/ 

0.8- 

0 , 6 -  rical 

6 terms 1 
3 terms I small solution 

{~) 

0,5-  

0,4- 

0,3- 

0.2- 

0 , ~ -  

0.0 
0.0 

0.0 
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= -10 A = -s I = -3 //k : -2 

I ,1' / /  
f / / 
I ,' / 

/ v 

I 1 I 
011 012 0.3 0.4 0,5 
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0.6- 

0.4- 

0.2-  

0,0 

ow(E) 

~11) ~. = -I.5 k = -1.4 k = -1.3 

• ' / -'~';--- A = -1.2 

0.05- 

0.04- 

0.03- 

0.02- 

0.01 - 

0.0 

[d) 
= -100 k = - 50  ~. = - 20  
, ; / 

/ I // / I"  I" 

/ ,/ 

0.0 0.0t 0.02 0.03 

Fig. 5. Non-dimensional plate temperature 0w(¢) plotted against ~ for : (a) 2 = - 1.1 ; (b) 2 = - 1.2, - 1.3, 
- 1 . 4  and - 1 . 5 ;  (c) 2 = - 2 ,  - 3 ,  - 5  and - 1 0 ;  (d) 2 = -20 ,  - 3 0  and -100.  In cases (b) (d) the solid 
lines represent the full numerical solution whilst the dashed lines represent the six-term expansion for the 

small solution. 
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- ~ ,  ~ ~ 0, where ~,  denotes the separation position 
of the boundary  layer. Further,  as the value of )~ 
reduces from - 1.5, the relative range over which the 
full numerical solution and the small x solution agree 
becomes smaller [see Fig. 5(c) and 5(d)]. 

Since the non-dimensional  temperature is identi- 
cally zero at x = 0 [see equation (8)] u > 0 at x = 0 
and therefore it is always possible, for all finite values 
of 2, to be able to move away from x = 0. Further,  
we may expect that we will be able to continue the 
procedure until  reversed flow starts. This will occur 
when [see equation (3)] 

0 = --1/2 (31) 

for the first time. In all the calculations we have per- 
formed we have found that the maximum temperature 
at any ~ location always occurs on the surface of the 
plate. Hence, condit ion (31) reduces to 

0~(¢,) = - 1/Z (32) 

In Table 1 the location of the separation point, ¢, ,  
and the corresponding 'separated' wall temperature, 
0~(~) ,  obtained from the full numerical solution of 
equations (27) and (28) are presented for various 
values of 2 < - 1 .  The values of -1/)~ are also 
included in order to clarify the validity of condit ion 
(25) as to when the flow separates. Also, from Table 
1, it is interesting to observe that the (critical) function 
t, defined as 

t(2) = 2¢~(2) (33) 

is a decreasing function of ~, and it appears as though 
there is a finite limit for t(2) as 2 --+ - m,  say t °. This 
can be deduced from Table 1 where, for example, for 
large negative values of 2 such as - 1 0 0 ,  - 5 0 0  and 
- 1 0 0 0 ,  the corresponding values of function t are 
very close to each other, namely, -0 .539 ,  -0 ,537  and 
-0 .536 ,  respectively. Therefore it appears that the 
value of - 0 . 5 3 6  is probably very close to the correct 
asymptotic value of t o . Because of the above obser- 
vations we now introduce the approximate functions 

tj(2) = )~[1(2 ) ,  j>~ 1 (34) 

where ~{) is the 'separation'  point as predicted from 
the small x solution, given by equation (16), when 
us ing j  terms in the expansion in order to satisfy con- 
dition (32). The values of ~{~(2) for j e  {1,3,6} are 
also given in Table 1. Again, it can be observed that 
the values of  ti(2 ) for large negative values of  ,i are 
given by 

f 
-0 .886  for j = l  

tO = -0 .650  for j = 3 (35) / 

- 0 . 5 9 0  for j = 6  

which appear to be approaching the limit t °. At this 
stage it is worth noting that the values given by 
expression (35) can also be obtained by using the fact 
that, when )~ becomes very large and negative, it can 
be removed from equations (14) through the trans- 
formations 

.li = )JF~ (36a) 

h, = 2JHi. (36b) 

Equations (14) then become independent of 2 and 
take the forms 

F;  = H ,  , 

2H',!+ Foil) - ( j  + 1)F'oH, = 

j - I  

[( i+ 1)HeF', i - ( i+2)F,+,H~_i_ , ]  
i - O  

F,(0) = 0 H)(0) = 0 H,(o¢) = 0 (37) 

with,/" >/ 1. Obviously F o =.f~ and H0 = ho, and hence 
F0 and H 0 are given by equations (13). In solving 
equations (37) of major interest is the determination 
of the values Hi(0), i >/0, since the temperature on 
the plate, O~(x),  can be obtained using relation (16), 
via transformation (36b). From the analytical solu- 
tion (15) it is easy to find that H o ( 0 ) =  2/V/~ 
and H~(0)=  l / 4 -2 / r t ,  whilst the further values 

Table 1. Location of the separation point and the corresponding "separated" wall 
temperature for various values of ). < 1 

10 
20 
30 
50 

100 
500 

1000 

1.1 3,768 - -  - -  0.805 0.915 0.909 
1.2 1.818 1.670 3.875 0.738 0.838 0.833 
1.3 1.213 1.195 1.300 0.681 0.771 0.769 
1.4 0.930 0.930 0.960 0.633 0.715 0.714 
1.5 0.762 0.780 0.805 0.590 0.666 0.666 
2 0.423 0.450 0.475 0.443 0.499 0.500 
3 0.232 0.255 0.270 0.295 0.332 0.333 
5 0.123 0.136 0.147 0.177 0.199 0.200 

5.74E- 2 6.35E-2 7.00E- 2 8.86E-2 9.98E-2 0.100 
2.77E-2 3.10E-2 3.30E-2 4.43E-2 4.98E-2 5.00E-2 
1.18E-2 2.05E-2 2.20E-2 2.95E-2 3.31E-2 3.33E-2 
1.08E-2 1.20E-2 1.35E-2 1.77E-2 1.97E-2 2.00E-2 
5.39E-3 6.10E-3 6.60E- 3 8.86E-3 9.87E-3 1.00E-2 
1.07E-3 1.19E-3 1.30E-3 1.77E-3 1.98E-3 2.00E- 3 
5.36E--4 5.90E-4 6.50E-4 8.86E-4 9.95E-4 1.00E- 3 
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//2(0 ) = 0.338, H3(0 ) = --0.383, H4(0) = 0.490, 
H~(0) = -0 .677 ,  etc. have been obtained by numeri- 
cally integrating equations (37). The coefficients H~(0), 
i >~ 0, are then introduced into equation (32) and the 
approximate limits t~ J, j / >  1, are obtained. The first 
six calculated values are 

t t ~ = - 0 . 8 8 6  t ~ = - 0 . 7 1 2  t ~ = - 0 . 6 5 4  (38a) 

t ° = - 0 . 6 2 6  t ~ = - 0 . 6 0 8  t ° = - 0 . 5 9 6 .  (38b) 

The agreement between these results and expression 
(35) is very good and was expected because for any 
value of  2 it can be proved that f ( 0 )  and hi(0) are 
polynomial functions in ,i of  degree j ;  hence, in the 
limit 2 ~ - oo only the leading coefficient is important  
and, in fact, this assumption was used in equations 
(36). In addition, from expressions (38) it is clear that 
the larger the value o f j  in the series expansions for 
small x the better does the limit t~ approach the full 
numerical limit t °, i.e. approximately -0 .536 .  This 
convergence is shown more clearly in Fig. 6 through 
log- log plots of  the critical values ~ ,  ~ ~3~ ~ c r  , % o r  and 
~6~, as given in Table 1, against -)~. F rom Fig. 6 it is 
observed that the curves are parallel when - 2 is large 
and the full numerical curve is more closely 
approached by the inclusion of  more terms in the 
series expansion for small values of  x. Furthermore,  
it is likely that these curves are almost straight lines 
for large values of  - 2 ,  illustrating the convergence of  
t, t~, t3 and t6. Finally, from the wide range of  values 
2 < - 1 which have been analysed in Figs. 5 and 6 
and Table 1, it may he postulated that the small x 
solution is a good approximation almos t  up to the 
point of  separation. 

5. CONCLUSIONS 

The problem of steady conjugate mixed convection 
along a vertical finite flat plate which is embedded in 
a porous medium has been studied. The conjugation 

~'cr 

i~ ~- 

1~  0 - 

!0-~_ 

]0-~_ 

I0~- 

. o  I I I - [ ~  I I nl(~ 13 - ~  

Fig. 6. Log-log plot curves of ~ against - 2 ,  as given by 
Table 1, using the full numerical solution (dotted line) and 
the one-, three and six-term expansions for the small solution 

(solid lines in decreasing order). 

parameter has been scaled out of  the governing partial 
differential equations and the problem only contains 
the buoyancy parameter,  2. Numerical  solutions of  
these equations were obtained for both aiding (2 > 0) 
and opposing (2 < 0) flows. In addition, small (near 
the leading edge) and large (downstream of  the lead- 
ing edge) solutions have been reported. A series of  
computat ions have been performed in which the prin- 
cipal parameters (the distance along the plate, ~, and 
the buoyancy parameter, 2) which govern the heat 
transfer in this geometry have been systematically 
investigated. As a result, detailed relations between 
these parameters and the location where the flow sep- 
arates from the plate have been elucidated. The finite- 
difference solutions have been proved to be accurate 
in comparison with the reported small and large series 
expansion solutions. The important  effects of  the 
buoyancy parameter 2 on the temperature profiles at 
the plate and in the convective fluid have been 
discussed, and it is concluded that for 2 >~ - 1 there 
is always a solution of  the boundary-layer equations, 
whilst for )o < - I the flow separates at a position 
downstream of  the leading edge of  the plate. Thus, 
the conjugate  nature of  the problem has enabled sol- 
utions to be found for the opposing flow situation 
when - 1 <~ 2 < 0. Therefore, as mentioned in ref. [8], 
careful considerations should be given in the porous 
medium context to the problem of flow separation 
which results in the spreading of  the heat supplied 
from the plate into a much wider region of  the porous 
medium than the boundary layer on the plate. 
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